博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Tail Recursion, Recursion, Concepts and Examples
阅读量:5245 次
发布时间:2019-06-14

本文共 5916 字,大约阅读时间需要 19 分钟。

Recursive procedures call themselves to work towards a solution to a problem.

In simple implementations this balloons the stack as the nesting gets deeper and deeper,
reaches the solution, then returns through all of the stack frames.
This waste is a common complaint about recursive programming in general.

A function call is said to be tail recursive if there is nothing to do after the function returns except return its value.

Since the current recursive instance is done executing at that point, saving its stack frame is a waste.
Specifically, creating a new stack frame on top of the current, finished, frame is a waste.
A compiler is said to implement TailRecursion if it recognizes this case and replaces the caller in place with the callee,
so that instead of nesting the stack deeper, the current stack frame is reused.
This is equivalent in effect to a "GoTo", and lets a programmer write recursive definitions
without worrying about space inefficiency (from this cause) during execution. 
TailRecursion is then as efficient as iteration normally is. 

Consider this recursive definition of the factorial function in C:

 

int factorial( n ){  if ( n == 0 )    return 1;  return n * factorial( n - 1 );}

This definition is not tail-recursive since the recursive call to factorial is not the last thing in the function

(its result has to be multiplied by n). But watch this:

int factorial1( n, accumulator ){  if ( n == 0 )    return accumulator;  return factorial1( n - 1, n * accumulator );}int factorial( n ){  return factorial1( n, 1 );}

The tail-recursion of factorial1 can be equivalently defined in terms of goto:

int factorial1( n, accumulator ){  beginning: if ( n == 0 )    return accumulator;  else  {    accumulator *= n;    n -= 1;    goto beginning;  }}

From the goto version, we can derive a version that uses C's built-in control structures:

int factorial1( n, accumulator ){  while ( n != 0 )  {    accumulator *= n;    n -= 1;  }  return accumulator;}

The simple C example illustrates a case where the recursive call could be optimized into a goto.

As far as we know, neither common Perl nor C implementations do this. Does anyone know better?

 

 

Recursion, Concepts and Examples

Tom Kelliher, CS23

 

Feb. 21, 1996

 

 

The Stack Model of Program Execution

How does a program use memory?

  • Code --- code segment
  • Static items --- data segment
  • Local items --- stack (segment)
  • Dynamic items --- heap

What's a stack?

Terminology:

  • Push
  • Pop
  • Activation record

Contents of activation record:

  1. Return address
  2. Initialized actual arguments
  3. Uninitialized locals
  4. Return value
  5. Stack bookkeeping info.

Created by calling function, used by called function

Idea:

  1. Each time function called, activation pushed
  2. Function executes (possibly causing further pushes)
  3. Each time function returns, activation popped

Recursion 

  • What is it?
  • Divide and conquer
  • base case

What do I need?

  1. Decomposition into smaller problems of same type
  2. Recursive calls must diminish problem size
  3. Necessity of base case
  4. Base case must be reached

Box Trace Example

Consider the code fragment:

main( ){  int i = 4;                 // 1  cout << f( i ) << endl;      // 2  i++;                       // 3  cout << f( i ) << endl;      // 4}int f( int a1 ){  if ( a1 <= 1 )               // 5    return 1;               // 6  else    // 7    return a1 * f( a1 - 1 );  // 8}

Box trace yourselves:

#include 
int BinSearch( const int A[ ], int First, int Last, int Value )// ---------------------------------------------------------// Searches the array elements A[First] through A[Last] // for Value by using a binary search.// Precondition: 0 <= First, Last <= SIZE - 1, where// SIZE is the maximum size of the array, and// A[First] <= A[First+1] <= ... <= A[Last].// Postcondition: If Value is in the array, returns// the index of the array element that equals Value;// otherwise returns -1.// ---------------------------------------------------------{ if ( First > Last ) return -1; // Value not in original array else { // Invariant: If Value is in A, // A[First] <= Value <= A[Last] int Mid = ( First + Last ) / 2; if ( Value == A[ Mid ] ) return Mid; // Value found at A[Mid] else if ( Value < A[ Mid ] ) return BinSearch( A, First, Mid - 1, Value ); // X else return BinSearch( A, Mid + 1, Last, Value ); // Y } // end else} // end BinSearch

 

Assume the array holds: 1, 5, 9, 12, 15, 21, 29, 31

Search for: 5, 13

 

Efficiency of Recursion

Costs:

  • Function call, return
  • Repeated solution of same sub-problems

Consider:

int fib( int val ){  if ( val <= 2 )    return 1;  else    return fib( val - 1 ) + fib( val - 2 );}

 

Call graph for fib(6):

 

 

Tail Recursion

A function is tail recursive if the very last thing it does is make its recursive call.

Example:

void printLinkedList( list* l ){  if ( l != NULL )  {    cout << l->fname << " " << l->lname << endl;    printLinkedList( l->next );  }}

 

Are fact()fib() tail recursive?

 

Head Recursion

What is it?

Write a recursive function which prints a reversed string

Is it head recursive?

Utility of head recursion 

Example 1

Write a recursive function which computes pow(n, i).

int pow( int n, int i ){  if ( i == 0 )    return 1;  else if ( i == 1 )    return n;  else  {    int partial = pow( n, i / 2 );    if ( i % 2 == 0 )      return partial * partial;    else      return partial * partial * n;  }}

 

More efficient than iterative solution?

Example 2

How is an array an example of a recursive data structure?

What does the following function do? Assume that it is called this way:

int d[ 3 ] = {  3,  89,  47 };f(d, 3);

 

Here's the function:

void f( int d[ ], int n ){  if ( n != 0 )  {    cout << d[ n - 1 ] << endl;    f( d, n - 1 );  }}

 

What does this version do?

void f( int d[ ], int n ){  if ( n != 0 )  {    cout << d[ 0 ] << endl;    f( d + 1, n - 1 );  }}

 

转载于:https://www.cnblogs.com/shangdawei/archive/2013/05/27/3102112.html

你可能感兴趣的文章
编程算法 - 左旋转字符串 代码(C)
查看>>
IOS解析XML
查看>>
Python3多线程爬取meizitu的图片
查看>>
树状数组及其他特别简单的扩展
查看>>
zookeeper适用场景:分布式锁实现
查看>>
110104_LC-Display(液晶显示屏)
查看>>
httpd_Vhosts文件的配置
查看>>
php学习笔记
查看>>
普通求素数和线性筛素数
查看>>
React Router 4.0 基本使用
查看>>
PHP截取中英文混合字符
查看>>
【洛谷P1816 忠诚】线段树
查看>>
电子眼抓拍大解密
查看>>
poj 1331 Multiply
查看>>
tomcat7的数据库连接池tomcatjdbc的25个优势
查看>>
Html 小插件5 百度搜索代码2
查看>>
P1107 最大整数
查看>>
多进程与多线程的区别
查看>>
Ubuntu(虚拟机)下安装Qt5.5.1
查看>>
java.io.IOException: read failed, socket might closed or timeout, read ret: -1
查看>>